Search results for " Computational complexity"

showing 10 items of 91 documents

Quantum Online Algorithms with Respect to Space Complexity

2017

Online algorithm is a well-known computational model. We introduce quantum online algorithms and investigate them with respect to a competitive ratio in two points of view: space complexity and advice complexity. We start with exploring a model with restricted memory and show that quantum online algorithms can be better than classical ones (deterministic or randomized) for sublogarithmic space (memory), and they can be better than deterministic online algorithms without restriction for memory. Additionally, we consider polylogarithmic space case and show that in this case, quantum online algorithms can be better than deterministic ones as well.

FOS: Computer and information sciencesComputer Science - Computational ComplexityQuantum PhysicsFOS: Physical sciencesComputerApplications_COMPUTERSINOTHERSYSTEMSComputational Complexity (cs.CC)Quantum Physics (quant-ph)
researchProduct

Quantum algorithm for tree size estimation, with applications to backtracking and 2-player games

2017

We study quantum algorithms on search trees of unknown structure, in a model where the tree can be discovered by local exploration. That is, we are given the root of the tree and access to a black box which, given a vertex $v$, outputs the children of $v$. We construct a quantum algorithm which, given such access to a search tree of depth at most $n$, estimates the size of the tree $T$ within a factor of $1\pm \delta$ in $\tilde{O}(\sqrt{nT})$ steps. More generally, the same algorithm can be used to estimate size of directed acyclic graphs (DAGs) in a similar model. We then show two applications of this result: a) We show how to transform a classical backtracking search algorithm which exam…

FOS: Computer and information sciencesQuantum PhysicsSpeedupBacktrackingFOS: Physical sciences0102 computer and information sciences02 engineering and technologyComputational Complexity (cs.CC)Directed acyclic graph01 natural sciencesSearch treeCombinatoricsComputer Science - Computational Complexity010201 computation theory & mathematicsSearch algorithm020204 information systemsComputer Science - Data Structures and AlgorithmsTernary search tree0202 electrical engineering electronic engineering information engineeringData Structures and Algorithms (cs.DS)Quantum algorithmDepth-first searchQuantum Physics (quant-ph)MathematicsProceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing
researchProduct

New separation between $s(f)$ and $bs(f)$

2011

In this note we give a new separation between sensitivity and block sensitivity of Boolean functions: $bs(f)=(2/3)s(f)^2-(1/3)s(f)$.

Computer Science - Computational Complexity
researchProduct

A Tight Lower Bound on Certificate Complexity in Terms of Block Sensitivity and Sensitivity

2014

Sensitivity, certificate complexity and block sensitivity are widely used Boolean function complexity measures. A longstanding open problem, proposed by Nisan and Szegedy, is whether sensitivity and block sensitivity are polynomially related. Motivated by the constructions of functions which achieve the largest known separations, we study the relation between 1-certificate complexity and 0-sensitivity and 0-block sensitivity. Previously the best known lower bound was $C_1(f)\geq \frac{bs_0(f)}{2 s_0(f)}$, achieved by Kenyon and Kutin. We improve this to $C_1(f)\geq \frac{3 bs_0(f)}{2 s_0(f)}$. While this improvement is only by a constant factor, this is quite important, as it precludes achi…

Computer Science - Computational Complexity
researchProduct

Probabilistic verification of all languages

2018

We present three protocols for verifying all languages: (i) For any unary (binary) language, there is a log-space (linear-space) interactive proof system (IPS); (ii) for any language, there is a constant-space weak-IPS (the non-members may not be rejected with high probability); and, (iii) for any language, there is a constant-space IPS with two provers where the verifier reads the input once. Additionally, we show that uncountably many binary (unary) languages can be verified in constant space and in linear (quadratic) expected time.

FOS: Computer and information sciencesComputer Science - Computational ComplexityFormal Languages and Automata Theory (cs.FL)Computer Science - Formal Languages and Automata TheoryComputational Complexity (cs.CC)
researchProduct

Quantum Pushdown Automata

2001

Quantum finite automata, as well as quantum pushdown automata (QPA) were first introduced by C. Moore and J. P. Crutchfield. In this paper we introduce the notion of QPA in a non-equivalent way, including unitarity criteria, by using the definition of quantum finite automata of Kondacs and Watrous. It is established that the unitarity criteria of QPA are not equivalent to the corresponding unitarity criteria of quantum Turing machines. We show that QPA can recognize every regular language. Finally we present some simple languages recognized by QPA, not recognizable by deterministic pushdown automata.

FOS: Computer and information sciencesQuantum PhysicsComputer Science - Computational ComplexityFormal Languages and Automata Theory (cs.FL)FOS: Physical sciencesComputer Science - Formal Languages and Automata TheoryComputational Complexity (cs.CC)Quantum Physics (quant-ph)Computer Science::Formal Languages and Automata Theory
researchProduct

An Introduction to Computational Complexity

2016

This chapter is not strictly about algebra. However, this chapter offers a set of mathematical and computational instruments that will allow us to introduce several concepts in the following chapters. Moreover, the contents of this chapter are related to algebra as they are ancillary concepts that help (and in some cases allow) the understanding of algebra.

Set (abstract data type)symbols.namesakeTheoretical computer scienceComputational complexity theoryComputer scienceAsymptotic computational complexityWorst-case complexitysymbolsComputational problemAlgebra over a fieldComputational resourceHuffman coding
researchProduct

Understanding Quantum Algorithms via Query Complexity

2017

Query complexity is a model of computation in which we have to compute a function $f(x_1, \ldots, x_N)$ of variables $x_i$ which can be accessed via queries. The complexity of an algorithm is measured by the number of queries that it makes. Query complexity is widely used for studying quantum algorithms, for two reasons. First, it includes many of the known quantum algorithms (including Grover's quantum search and a key subroutine of Shor's factoring algorithm). Second, one can prove lower bounds on the query complexity, bounding the possible quantum advantage. In the last few years, there have been major advances on several longstanding problems in the query complexity. In this talk, we su…

Discrete mathematicsFOS: Computer and information sciencesQuantum PhysicsComputer scienceModel of computationSubroutineComputer Science::Information RetrievalFOS: Physical sciencesFunction (mathematics)Computational Complexity (cs.CC)Symmetric functionComputer Science - Computational ComplexityBounding overwatchPartial functionKey (cryptography)Quantum algorithmQuantum Physics (quant-ph)Computer Science::Databases
researchProduct

Optimal Classical Random Access Codes Using Single d-level Systems

2015

Recently, in the letter [Phys. Rev. Lett. {\bf 114}, 170502 (2015)], Tavakoli et al. derived interesting results by studying classical and quantum random access codes (RACs) in which the parties communicate higher-dimensional systems. They construct quantum RACs with a bigger advantage over classical RACs compared to previously considered RACs with binary alphabet. However, these results crucially hinge upon an unproven assertion that the classical strategy "majority-encoding-identity-decoding" leads to the maximum average success probability achievable for classical RACs; in this article we provide a proof of this intuition. We characterize all optimal classical RACs and show that indeed "…

FOS: Computer and information sciencesQuantum PhysicsComputer Science - Computational ComplexityInformation Theory (cs.IT)Computer Science - Information TheoryFOS: Physical sciencesComputational Complexity (cs.CC)Quantum Physics (quant-ph)Quantitative Biology::Cell Behavior
researchProduct

Symmetry-assisted adversaries for quantum state generation

2011

We introduce a new quantum adversary method to prove lower bounds on the query complexity of the quantum state generation problem. This problem encompasses both, the computation of partial or total functions and the preparation of target quantum states. There has been hope for quite some time that quantum state generation might be a route to tackle the $backslash$sc Graph Isomorphism problem. We show that for the related problem of $backslash$sc Index Erasure our method leads to a lower bound of $backslash Omega(backslash sqrt N)$ which matches an upper bound obtained via reduction to quantum search on $N$ elements. This closes an open problem first raised by Shi [FOCS'02]. Our approach is …

Discrete mathematicsQuantum PhysicsReduction (recursion theory)Informatique généraleOpen problemMultiplicative function0102 computer and information sciences01 natural sciencesUpper and lower boundsComputer Science - Computational ComplexityRepresentation theory of the symmetric group010201 computation theory & mathematicsQuantum state0103 physical sciencesGraph isomorphism010306 general physicsQuantumMathematics
researchProduct